Зачем проводить геометрически

нелинейные расчеты?

Александр Николаевич Мухин

Александр Александрович Мухин

 

Пользователи системы ИСПА довольно часто задают один и тот же вопрос. В каких случаях и для каких конструкций необходимо проводить геометрически нелинейный расчет (расчет на потерю устойчивости)?

Именно об этом и пойдет речь в данной статье. Ответ на этот вопрос постараемся дать в разных вариантах.

 

Вариант 1.

Расчеты на прочность и жесткость, выполняемые для большинства видов деформаций конструкций основываются на предположении, что между внешними нагрузками и вызываемыми ими внутренними силами существует устойчивая форма равновесия, при которой малым возмущающим воздействиям соответствуют малые отклонения конструкции от первоначальной формы. Нагрузки, при превышении которых происходит потеря устойчивости (критическое состояние), называют критическими нагрузками.

Примером явления потери устойчивости может послужить длинная школьная линейка, к одному из концов которой приложена сжимающая сила. Сначала материал линейки сопротивляется нагрузке, и линейка работает, как обычный сжимаемый брус. Затем, по достижении определенной нагрузки, линейка начинает прогрессирующе изгибаться без существенного увеличения сжимающей силы и теряет устойчивость (т. е. гнется без заметных усилий вплоть до поломки).

Это явление можно объяснить тем, что к реальному стержню практически невозможно применить основные гипотезы и допущения сопромата - об однородности, изотропности и непрерывности материала. Поэтому при продольном сжатии стержня, даже если сжимающая сила приложена идеально вдоль его оси (что тоже на практике нереально), отдельные волокна этого стержня неодинаково сопротивляются сжатию (из-за неоднородности и анизотропии материала, из которого он изготовлен). В результате, при достижении сжимающей силой критической величины, стержень начинает изгибаться в сторону наименьшего сопротивления волокон. На практике этому способствует, также, приложение нагрузки не строго вдоль центральной оси сечения. По мере увеличения изгиба и потери стержнем устойчивости возрастают изгибающие нагрузки, поскольку, чем сильнее изгибается стержень, тем дальше от его оси отклоняется линия действия сжимающей силы, образуя возрастающий момент изгиба. По этой причине стержень изгибается все сильнее даже при небольшом возрастании сжимающей силы (прогрессивно растет плечо изгибающего момента этой силы).  В конечном итоге стержень теряет устойчивость, что чаще всего сопровождается его поломкой или неупругой деформацией (безвозвратной потерей прямолинейности или начальной формы).

Если предположить, что материал стержня идеально соответствует принимаемым в сопромате допущениям и гипотезам, а сжимающая сила приложена строго к центру тяжести сечения вдоль оси стержня, то такой стержень будет работать на простое сжатие, и разрушится не из-за потери устойчивости, а из-за превышения предельных прочностных характеристик для сжатия.

Опасность потери устойчивости особенно велика для тонкостенных конструкций, стержней, пластин и оболочек.

 

Вариант 2.

При расчетах на прочность подразумевалось, что равновесие конструкции под действием внешних сил является устойчивым. Однако выход конструкции из строя может произойти из-за того, что равновесие конструкций в силу тех или иных причин окажется неустойчивым. Во многих случаях, кроме проверки прочности, необходимо производить еще проверку устойчивости элементов конструкций.

Состояние равновесия считается устойчивым, если при любом возможном отклонении системы от положения равновесия возникают силы, стремящиеся вернуть её в первоначальное положение.

Рассмотрим известные виды равновесия.

2014-09-24 21-22-05 Скриншот экрана

Неустойчивое равновесное состояние будет в том случае, когда хотя бы при одном из возможных отклонений системы от положения равновесия возникнут силы, стремящиеся удалить её от начального положения.

Состояние равновесия будет безразличным, если при разных отклонениях системы от положения равновесия возникают силы, стремящиеся вернуть её в начальное положение, но хотя бы при одном из возможных отклонений система продолжает оставаться в равновесии при отсутствии сил, стремящихся вернуть её в начальное положение или удалить от этого положения.

При потере устойчивости характер работы конструкции меняется, так как этот вид деформации переходит в другой, более опасный, способный привести её к разрушению при нагрузке значительно меньшей, чем это следовало из расчета на прочность. Очень существенно, что потеря устойчивости сопровождается нарастанием больших деформаций, поэтому явление это носит характер катастрофичности.

При переходе от устойчивого равновесного состояния к неустойчивому конструкция проходит через состояние безразличного равновесия. Если находящейся в этом состоянии конструкции сообщить некоторое небольшое отклонение от начального положения, то по прекращении действия причины, вызвавшей это отклонение, конструкция в исходное положение уже не вернется, но будет способна сохранить приданное ей, благодаря отклонению, новое положение.

Состояние безразличного равновесия, представляющее как бы границу между двумя основными состояниями – устойчивым и неустойчивым, называется критическим состоянием. Нагрузка, при которой конструкция сохраняет состояние безразличного равновесия, называется критической нагрузкой.

Эксперименты показывают, что обычно достаточно немного увеличить нагрузку по сравнению с её критическим значением, чтобы конструкция из-за больших деформаций потеряла свою несущую способность, вышла из строя. В строительной технике потеря устойчивости даже одним элементом конструкции вызывает перераспределение усилий во всей конструкции и нередко приводит к аварии.

 

Вариант 3.

Методы определения напряжений и перемещений, возникающих в конструкциях, позволяют расчетчику оценить их  прочность и жесткость. Однако оказывается, что соблюдение условий прочности и жесткости еще не гарантирует способности конструкции выполнять, предназначенные ей функции в эксплуатационных режимах. Наряду с выполнением условий прочности и жесткости, необходимо обеспечить и устойчивость конструкций.

При неизменной схеме нагружения, под устойчивостью понимается свойство системы сохранять свое первоначальное равновесное состояние. Если рассматриваемая система таким свойством не обладает, то она называется неустойчивой, а ее равновесное состояние – неустойчивым состоянием.

При неизменной схеме нагружения, в процессе роста интенсивности нагрузок, явление перехода системы от одного равновесного состояния к другому равновесному состоянию, называется потерей устойчивости системы. Значения внешних сил, при которых происходит потеря устойчивости, называются критическими.

В некоторых случаях при потере устойчивости, система, переходя в новое устойчивое равновесное состояние, продолжает выполнять свои функции. Однако в подавляющем большинстве случа­ев, потеря устойчивости системы сопровождается возникновением больших перемещений, пластических деформаций или ее полным разрушением. Поэтому сохранение исходного (расчетного) равновесного состояния системы является важной задачей и одной из основных проблем проектирования и конструирования.

 

На основании вышеизложенного можно сделать вывод, что для любых тонкостенных конструкций необходимо проводить расчеты, определяющие общую и местную потерю устойчивости.

 

Май 2016 г.